Concise Comparative Summaries (ccs) of Large Text Corpora with a Human Experiment1 By

نویسندگان

  • LUKE MIRATRIX
  • JINZHU JIA
  • BIN YU
  • BRIAN GAWALT
  • LAURENT EL GHAOUI
  • LUKE BARNESMOORE
چکیده

2013, Vol. 0, No. 00, 1–31 DOI: 10.1214/13-AOAS698 © Institute of Mathematical Statistics, 2013 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 CONCISE COMPARATIVE SUMMARIES (CCS) OF LARGE TEXT CORPORA WITH A HUMAN EXPERIMENT1 BY LUKE MIRATRIX∗, JINZHU JIA†, BIN YU‡, BRIAN GAWALT‡, LAURENT EL GHAOUI‡, LUKE BARNESMOORE§ AND SOPHIE CLAVIER§ Harvard University∗, Peking University†, UC Berkeley‡ and San Francisco State University§ In this paper we propose a general framework for topic-specific summarization of large text corpora and illustrate how it can be used for the analysis of news databases. Our framework, concise comparative summarization (CCS), is built on sparse classification methods. CCS is a lightweight and flexible tool that offers a compromise between simple word frequency based methods currently in wide use and more heavyweight, model-intensive methods such as latent Dirichlet allocation (LDA). We argue that sparse methods have much to offer for text analysis and hope CCS opens the door for a new branch of research in this important field. For a particular topic of interest (e.g., China or energy), CSS automatically labels documents as being either onor off-topic (usually via keyword search), and then uses sparse classification methods to predict these labels with the high-dimensional counts of all the other words and phrases in the documents. The resulting small set of phrases found as predictive are then harvested as the summary. To validate our tool, we, using news articles from the New York Times international section, designed and conducted a human survey to compare the different summarizers with human understanding. We demonstrate our approach with two case studies, a media analysis of the framing of “Egypt” in the New York Times throughout the Arab Spring and an informal comparison of the New York Times’ and Wall Street Journal’s coverage of “energy.” Overall, we find that the Lasso with L2 normalization can be effectively and usefully used to summarize large corpora, regardless of document size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concise comparative summaries (CCS) of large text corpora with a human experiment

In this paper we propose a general framework for topic-specific summarization of large text corpora and illustrate how it can be used for the analysis of news databases. Our framework, concise comparative summarization (CCS), is built on sparse classification methods. CCS is a lightweight and flexible tool that offers a compromise between simple word frequency based methods currently in wide us...

متن کامل

Arabic News Articles Classification Using Vectorized-Cosine Based on Seed Documents

Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed up the process of classification for any text categorization task. It also serves as a tool for...

متن کامل

Systematic literature review of fuzzy logic based text summarization

Information Overloadrq  is not a new term but with the massive development in technology which enables anytime, anywhere, easy and unlimited access; participation & publishing of information has consequently escalated its impact. Assisting userslq    informational searches with reduced reading surfing time by extracting and evaluating accurate, authentic & relevant information are the primary c...

متن کامل

Resource Lean and Portable Automatic Text Summarization

Today, with digitally stored information available in abundance, even for many minor languages, this information must by some means be filtered and extracted in order to avoid drowning in it. Automatic summarization is one such technique, where a computer summarizes a longer text to a shorter non-rendundant form. Apart from the major languages of the world there are a lot of languages for which...

متن کامل

A comparative study of the text inside the Mihrabi rug by Zareh Penyamin and Topkapi Palace Museum according to the existing discourse in the 16th and 19th

IIn the country of Turkey, in the city of Hereke, at the end of the 19th century, rugs known as Mihrabi became popular, which were inspired by the rugs of the Safavid era and kept in the Topkapi Palace Museum. In these rugs, which are reproduced in royal workshops on a large scale, some changes have been made in the verbal text and incorporated visual elements. Among the rugs that seem to have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014